Elevated CO2 alters leaf-litter-derived dissolved organic carbon: effects on stream periphyton and crayfish feeding preference
نویسندگان
چکیده
Elevated atmospheric CO2 increases plant C fixation, and much of the soluble C content of deciduous leaf litter entering streams is leached as dissolved organic C (DOC). The effects of DOC from trembling aspen (Populus tremuloides Michaux) leaf litter grown under elevated (ELEV 1⁄4 720 ppm) and ambient (AMB1⁄4 360 ppm) CO2 on stream periphyton were measured during a 35-d experiment in outdoor artificial stream chambers. Crayfish feeding preferences for periphyton grown in AMB and ELEV treatments were evaluated in short-term foraging trials using a Y-maze. Periphyton was sampled through time for ashfree dry mass (AFDM), chlorophyll a, total C:N, algal biovolume and species composition, and bacterial productivity and biomass. Leaf litter from plants grown under ELEV CO2 produced higher concentrations of refractory DOC than did leaf litter from plants grown under AMB CO2, and chlorophyll a concentrations were lower in periphyton enriched with ELEV DOC than in periphyton enriched with AMB DOC. ELEV DOC did not significantly affect bacterial productivity and biomass or total periphyton C:N, but cyanobacterial biovolume was higher in ELEV algal assemblages than in AMB algal assemblages after 35 d. AMB algal assemblages were dominated by the diatom Epithemia adnata var. proboscidea, which contains Nfixing endosymbionts. Orconectes virilis crayfish preferred AMB periphyton stimulus when offered the choice of AMB and ELEV stimuli or AMB and control stimuli. Our results suggest that DOC from trembling aspen leaf litter produced under ELEV CO2 alters algal accrual and species assemblages of stream periphyton, and this shift in basal resource quantity and quality could affect feeding preferences of crayfish.
منابع مشابه
Effects of Elevated CO2 on Litter Chemistry and Subsequent Invertebrate Detritivore Feeding Responses
Elevated atmospheric CO2 can change foliar tissue chemistry. This alters leaf litter palatability to macroinvertebrate detritivores with consequences for decomposition, nutrient turnover, and food-web structure. Currently there is no consensus on the link between CO2 enrichment, litter chemistry, and macroinvertebrate-mediated leaf decomposition. To identify any unifying mechanisms, we presente...
متن کاملNutrient release rates and ratios by two stream detritivores fed leaf litter grown under elevated atmospheric CO2
We examined how nutrient release by two common stream detritivores, Asellus and Gammarus, was affected by the consumption of aspen leaf litter from trees grown under elevated CO2. We measured excretory release of dissolved organic carbon (DOC), ammonia (NH4), and soluble reactive phosphorus (SRP) from consumers fed senesced leaves of Populus tremuloides (trembling aspen) trees grown under eleva...
متن کاملEcological stoichiometry in freshwater benthic systems: recent progress and perspectives
1. Ecological stoichiometry deals with the mass balance of multiple key elements [e.g. carbon (C), nitrogen (N), phosphorus (P)] in ecological systems. This conceptual framework, largely developed in the pelagic zone of lakes, has been successfully applied to topics ranging from population dynamics to biogeochemical cycling. More recently, an explicit stoichiometric approach has also been used ...
متن کاملCorrelation of Foliage and Litter Chemistry of Sugar Maple, Acer saccharum, as Affected by Elevated CO<html_ent glyph="@lt;" ascii="<"></html_ent>sub<html_ent glyph="@gt;" ascii=">"></html_ent>2<html_ent glyph="@lt;" ascii="<"></html_ent>/sub<html_ent glyph="@gt;" ascii=">"></html_ent> and Varying N Availability, and Effects on Decomposition
Rising atmospheric carbon dioxide has the potential to alter leaf litter chemistry, potentially affecting decomposition and rates of carbon and nitrogen cycling in forest ecosystems. This study was conducted to determine whether growth under elevated atmospheric CO2 altered the quality and microbial decomposition of leaf litter of a widely distributed northern hardwood species at sites of low a...
متن کاملInfluence of Litter Diversity on Dissolved Organic Matter Release and Soil Carbon Formation in a Mixed Beech Forest
We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Pa...
متن کامل